Hiperspektral görüntülerin boyut indirgemesinde sezgisel yöntemler ile graf benzerlik matrisinin eniyilemesi

Translated title of the contribution: Optimization of graph affinity matrix with heuristic methods in dimensionality reduction of hypespectral images

Oguzhan Ceylan, Gulsen Taskin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Hyperspectral images include hundreds of spectral bands, adjacent ones of which are often highly correlated and noisy, leading to a decrease in classification performance as well as a high increase in computational time. Dimensionality reduction techniques, especially the nonlinear ones, are very effective tools to solve these issues. Locality preserving projection (LPP) is one of those graph based methods providing a better representation of the high dimensional data in the low-dimensional space compared to linear methods. However, its performance heavily depends on the parameters of the affinity matrix, that are k-nearest neighbor and heat kernel parameters. Using simple methods like grid-search, optimization of these parameters becomes very computationally demanding process especially when considering a generalized heat kernel, including an exclusive parameter per feature in the high dimensional space. The aim of this paper is to show the effectiveness of the heuristic methods, including harmony search (HS) and particle swarm optimization (PSO), in graph affinity optimization constructed with a generalized heat kernel. The preliminary results obtained with the experiments on the hyperspectral images showed that HS performs better than PSO, and the heat kernel with multiple parameters achieves better performance than the heat kernel with a single parameter.

Translated title of the contributionOptimization of graph affinity matrix with heuristic methods in dimensionality reduction of hypespectral images
Original languageTurkish
Title of host publication27th Signal Processing and Communications Applications Conference, SIU 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728119045
DOIs
Publication statusPublished - Apr 2019
Event27th Signal Processing and Communications Applications Conference, SIU 2019 - Sivas, Turkey
Duration: 24 Apr 201926 Apr 2019

Publication series

Name27th Signal Processing and Communications Applications Conference, SIU 2019

Conference

Conference27th Signal Processing and Communications Applications Conference, SIU 2019
Country/TerritoryTurkey
CitySivas
Period24/04/1926/04/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Fingerprint

Dive into the research topics of 'Optimization of graph affinity matrix with heuristic methods in dimensionality reduction of hypespectral images'. Together they form a unique fingerprint.

Cite this