High altitude smart monitoring system integration by using a helium powered mechanical balloon

Erke Aribaş, Evren Daǧlarli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Weather Balloons are used excessively in numerous areas and applications today. High altitude balloons are usually unmanned balloons that may climb up to 40km. We propose a high-altitude balloon system design that is capable of self-tuning itself in order to stay at a predefined height limit [1]. This type of a balloon system may be very useful from monitoring geophysical and atmospheric events but also for a vessel to use technological devices such as relay points. This altitude balancing design also allows to be manipulated using a controlled mechanism and may be easily applied for scientific, engineering and industrial purposes. They are much more economic and they almost use no power when they are compared with the alternative technologies.

Original languageEnglish
Title of host publicationProceedings of 8th International Conference on Recent Advances in Space Technologies, RAST 2017
EditorsM.F. Unal, A. Hacioglu, M.S. Yildiz, O. Altan, M. Yorukoglu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages167-170
Number of pages4
ISBN (Electronic)9781538616031
DOIs
Publication statusPublished - 4 Aug 2017
Event8th International Conference on Recent Advances in Space Technologies, RAST 2017 - Istanbul, Turkey
Duration: 19 Jun 201722 Jun 2017

Publication series

NameProceedings of 8th International Conference on Recent Advances in Space Technologies, RAST 2017

Conference

Conference8th International Conference on Recent Advances in Space Technologies, RAST 2017
Country/TerritoryTurkey
CityIstanbul
Period19/06/1722/06/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Keywords

  • air drone
  • helium powered balloon
  • high-altitude
  • mechanical control
  • pressure balancing
  • system integration

Fingerprint

Dive into the research topics of 'High altitude smart monitoring system integration by using a helium powered mechanical balloon'. Together they form a unique fingerprint.

Cite this