Hierarchical fuzzy TOPSIS model for selection among logistics information technologies

Cengiz Kahraman, Nüfer Yasin Ateş, Sezi Çevik, Murat Gülbay, S. Ayça Erdoğan

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)

Abstract

Purpose To develop a multi–attribute decision making model for evaluating and selecting among logistic information technologies. Design/methodology/approach First a multi–attribute decision making model for logistic information technology evaluation and selection consisting of 4 main and 11 sub criteria is constructed, then a hierarchical fuzzy TOPSIS method is developed to solve the complex selection problem with vague and linguistic data. Sensitivity analysis is presented. Findings Reviews the literature and provides a structured hierarchical model for logistic information technology evaluation and selection based on the premise that the logistic information technology evaluation and selection problem can be viewed as a product of tangible benefits, intangible benefits, policy issues and resources. Defines tangible benefits as cost savings, increased revenue, and return on investment; intangible benefits as customer satisfaction, quality of information, multiple uses of information, and setting tone for future business; policy issues as risk and necessity level; resources as costs and completion time. Presents a methodology that is developed for the complex, uncertain and vague characteristics of the problem. Research limitations/implications Comparisons with other multi–attribute decision making techniques such as AHP, ELECTRE, PROMETHEE and ORESTE under fuzzy conditions can be done for further research. Practical implications This article is a very useful source of information both for logistic managers and stakeholders in making decisions about logistic information technology investments. Originality/value This paper addresses the logistic information technology evaluation and selection criteria for practitioners and proposes a new multi–attribute decision making methodology, hierarchical fuzzy TOPSIS, for the problem.

Original languageEnglish
Pages (from-to)143-168
Number of pages26
JournalJournal of Enterprise Information Management
Volume20
Issue number2
DOIs
Publication statusPublished - Feb 2007

Fingerprint

Dive into the research topics of 'Hierarchical fuzzy TOPSIS model for selection among logistics information technologies'. Together they form a unique fingerprint.

Cite this