Hierarchical Dirichlet Process Based Gamma Mixture Modeling for Terahertz Band Wireless Communication Channels

Erhan Karakoca*, Gunes Karabulut Kurt, Ali Gorcin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Due to the unique channel characteristics of Terahertz (THz), comprehensive propagation channel modeling is essential to understand the spectrum and develop reliable communication systems in these bands. In this work, we propose the utilization of the hierarchical Dirichlet Process Gamma Mixture Model (DPGMM) to characterize THz channels statistically in the absence of any prior knowledge. DPGMM provides mixture component parameters and the required number of components. A revised expectation-maximization (EM) algorithm is also proposed as a pre-step for DPGMM. Kullback-Leibler Divergence (KL-divergence) is utilized as an error metric to examine the amount of inaccuracy of the EM algorithm and DPGMM when modeling the experimental probability density functions (PDFs). DPGMM and EM algorithm are implemented over the measurements taken at frequencies between 240 GHz and 300 GHz. By comparing the results of the DPGMM and EM algorithms for the measurement datasets, we demonstrate how well the DPGMM fits the target distribution. It is shown that the proposed DPGMM can accurately describe the various THz channels as well as the EM algorithm, and its flexibility allows it to represent more complex distributions better than the EM algorithm. We also demonstrated that DPGMM can be used to model any wireless channel due to its versatility.

Original languageEnglish
Pages (from-to)84635-84647
Number of pages13
JournalIEEE Access
Volume10
DOIs
Publication statusPublished - 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2013 IEEE.

Keywords

  • Dirichlet process
  • expectation maximization
  • Gamma mixture model
  • statistical channel modeling
  • Terahertz communications

Fingerprint

Dive into the research topics of 'Hierarchical Dirichlet Process Based Gamma Mixture Modeling for Terahertz Band Wireless Communication Channels'. Together they form a unique fingerprint.

Cite this