Greedy search for descriptive spatial face features

Caner Gacav, Burak Benligiray, Cihan Topal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Facial expression recognition methods use a combination of geometric and appearance-based features. Spatial features are derived from displacements of facial landmarks, and carry geometric information. These features are either selected based on prior knowledge, or dimension-reduced from a large pool. In this study, we produce a large number of potential spatial features using two combinations of facial landmarks. Among these, we search for a descriptive subset of features using sequential forward selection. The chosen feature subset is used to classify facial expressions in the extended Cohn-Kanade dataset (CK+), and delivered 88.7% recognition accuracy without using any appearance-based features.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1497-1501
Number of pages5
ISBN (Electronic)9781509041176
DOIs
Publication statusPublished - 16 Jun 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Keywords

  • facial expression recognition
  • sequential forward selection
  • spatial features

Fingerprint

Dive into the research topics of 'Greedy search for descriptive spatial face features'. Together they form a unique fingerprint.

Cite this