Abstract
Data are the essential component in the pipeline of training a model that determines the performance of the model. However, there may not be enough data that meet the requirements of some tasks. In this paper, we introduce a knowledge distillation-based approach that mitigates the disadvantages of data scarcity. Specifically, we propose a method that boosts the pixel domain performance of a model, by utilizing compressed domain knowledge via cross distillation between these two modalities. To evaluate our approach, we conduct experiments on two computer vision tasks which are object detection and recognition. Results indicate that compressed domain features can be utilized for a task in the pixel domain via our approach, where data are scarce or not completely available due to privacy or copyright issues.
Original language | English |
---|---|
Title of host publication | ISCAS 2024 - IEEE International Symposium on Circuits and Systems |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350330991 |
DOIs | |
Publication status | Published - 2024 |
Event | 2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 - Singapore, Singapore Duration: 19 May 2024 → 22 May 2024 |
Publication series
Name | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
ISSN (Print) | 0271-4310 |
Conference
Conference | 2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 19/05/24 → 22/05/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- compressed domain
- knowledge distillation