Abstract
Customer oriented systems provides advantages to companies in competitive environment. Understanding customers is a fundamental problem to present individualized offers. Gender information, which is one of the demographic information of customers, mainly cannot be obtained by data collection technologies. Therefore, various techniques are developed to predict unknown genders of customers. In this study, customer genders are predicted from their paths in a shopping mall using fuzzy set theory. A fuzzy classification method based on Levenshtein distance is developed for string data that refer to the indoor customer paths. Although there are several ways to predict the gender, no study has focused on path-based gender classification. The originality of the study is to classify customer data into the gender classes using indoor paths.
Original language | English |
---|---|
Title of host publication | Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making - Proceedings of the INFUS 2019 Conference |
Editors | Cengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A.Cagri Tolga |
Publisher | Springer Verlag |
Pages | 160-169 |
Number of pages | 10 |
ISBN (Print) | 9783030237554 |
DOIs | |
Publication status | Published - 2020 |
Event | International Conference on Intelligent and Fuzzy Systems, INFUS 2019 - Istanbul, Turkey Duration: 23 Jul 2019 → 25 Jul 2019 |
Publication series
Name | Advances in Intelligent Systems and Computing |
---|---|
Volume | 1029 |
ISSN (Print) | 2194-5357 |
ISSN (Electronic) | 2194-5365 |
Conference
Conference | International Conference on Intelligent and Fuzzy Systems, INFUS 2019 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 23/07/19 → 25/07/19 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Fuzzy C-Medoids
- Gender prediction
- Indoor paths
- Levenshtein distances
- Path classification