Abstract
A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.
Translated title of the contribution | Improved physical layer security in visible light communications by using focused light emitters |
---|---|
Original language | Turkish |
Title of host publication | SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665436496 |
DOIs | |
Publication status | Published - 9 Jun 2021 |
Event | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 - Virtual, Istanbul, Turkey Duration: 9 Jun 2021 → 11 Jun 2021 |
Publication series
Name | SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings |
---|
Conference
Conference | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 |
---|---|
Country/Territory | Turkey |
City | Virtual, Istanbul |
Period | 9/06/21 → 11/06/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.