Abstract
We report on the preparation and characterization of free-standing optofluidic waveguides created on solid superhydrophobic (SH) substrates with patterned wetting properties. In order to locally modify the liquid-solid contact angle, we employed selective laser ablation of SH layers deposited on magnesium-fluoride substrates with low refractive index. Upon ablation, surfaces with hydrophilic channels surrounded by SH areas were obtained. Subsequently, we created liquid optical waveguides based on total internal reflection using ethylene glycol, a polar liquid with high refractive index spreading spontaneously along the hydrophilic surface channels. We evaluated the light guiding performance and losses of these optofluidic waveguides.
Original language | English |
---|---|
Article number | 091123 |
Journal | Applied Physics Letters |
Volume | 104 |
Issue number | 9 |
DOIs | |
Publication status | Published - 3 Mar 2014 |