Fire Detection in H.264 Compressed Video

Murat Muhammet Savci, Yasin Yildirim, Gorkem Saygili, Behcet Uǧur Töreyin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

In this paper, we propose a compressed domain fire detection algorithm using macroblock types and Markov Model in H.264 video. Compressed domain method does not require decoding to pixel domain, instead a syntax parser extracts syntax elements which are only available in compressed domain. Our method extracts only macroblock type and corresponding macroblock address information. Markov model with fire and non-fire models are evaluated using offline-trained data. Our experiments show that the algorithm is able to detect and identify fire event in compressed domain successfully, despite a small chunk of data is used in the process.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8310-8314
Number of pages5
ISBN (Electronic)9781479981311
DOIs
Publication statusPublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • H.264/AVC
  • compressed domain
  • fire detection
  • mac-roblock type

Fingerprint

Dive into the research topics of 'Fire Detection in H.264 Compressed Video'. Together they form a unique fingerprint.

Cite this