Farkli Kullanici-Ürun Etkileşim Türlerini Kullanarak Özyineli Sinir Agilari ile Ürün Tahminlemesi

Translated title of the contribution: Item prediction with RNN using different types of user-item interactions

Fulya Celebi Sarioglu, Yusuf Yaslan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper deals with the session-based recommendations of different types of user-item interactions. Every user session includes sequences of item interactions such as item viewing, putting into basket and purchasing. Sequences that are constituted short events make the recommendation problems more challenging. Therefore, we applied a powerful state of the art Recurrent Neural Networks (RNN) with Gated Recurrent Unit (GRU) to train data and to predict the next item to be purchased. In the proposed method, Node2Vec representations of items are obtained using the probabilities of different useritem interactions. These representations are used as the initial weights of the GRU inputs. Experimental results are obtained on nearly one million sessions that are constituted by view, basket and purchase interactions which were collected from a Turkish e-commerce website. Experiments that are evaluated by using Mean Reciprocal Rank (MRR) and Recall metrics show that the proposed method performs 63% Recall and 41% MRR results.

Translated title of the contributionItem prediction with RNN using different types of user-item interactions
Original languageTurkish
Title of host publication27th Signal Processing and Communications Applications Conference, SIU 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728119045
DOIs
Publication statusPublished - Apr 2019
Event27th Signal Processing and Communications Applications Conference, SIU 2019 - Sivas, Turkey
Duration: 24 Apr 201926 Apr 2019

Publication series

Name27th Signal Processing and Communications Applications Conference, SIU 2019

Conference

Conference27th Signal Processing and Communications Applications Conference, SIU 2019
Country/TerritoryTurkey
CitySivas
Period24/04/1926/04/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Fingerprint

Dive into the research topics of 'Item prediction with RNN using different types of user-item interactions'. Together they form a unique fingerprint.

Cite this