TY - JOUR
T1 - Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium
AU - Gholami, Peyman
AU - Dinpazhoh, Laleh
AU - Khataee, Alireza
AU - Hassani, Aydin
AU - Bhatnagar, Amit
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/1/5
Y1 - 2020/1/5
N2 - This study reports the successful synthesis of Fe-Cu layered double hydroxide (Fe-Cu-LDH) /biochar (BC) nanocomposite by a hydrothermal method. The sonocatalytic performance of Fe-Cu-LDH/BC nanocomposite was investigated for the degradation of cefazolin sodium (CFZ), as a model emerging contaminant, from the solution. The physico-chemical properties of the synthesized samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and UV–Vis diffuse reflectance spectroscopy (DRS) analyses. The best sonocatalytic efficiency of 97.6% was achieved by using 1.0 g/L sonocatalyst, 0.1 mM CFZ, and an ultrasonic power of 300 W at pH = 6.5 (natural) within 80 min. Additionally, the effects of the addition of various oxidants, dissolved gases, and organic and inorganic scavengers on the degradation of CFZ were studied. Moreover, the possible sonocatalytic mechanism of the sonochemical degradation of CFZ in the presence of Fe-Cu-LDH/BC sonocatalyst was proposed based on the results of GC–MS analysis. The mineralization of CFZ solution was evaluated using COD and IC analyses. Finally, the reusability test of Fe-Cu-LDH/BC nanocomposite in the CFZ degradation revealed that almost 9% drop occurred after five successive cycles.
AB - This study reports the successful synthesis of Fe-Cu layered double hydroxide (Fe-Cu-LDH) /biochar (BC) nanocomposite by a hydrothermal method. The sonocatalytic performance of Fe-Cu-LDH/BC nanocomposite was investigated for the degradation of cefazolin sodium (CFZ), as a model emerging contaminant, from the solution. The physico-chemical properties of the synthesized samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and UV–Vis diffuse reflectance spectroscopy (DRS) analyses. The best sonocatalytic efficiency of 97.6% was achieved by using 1.0 g/L sonocatalyst, 0.1 mM CFZ, and an ultrasonic power of 300 W at pH = 6.5 (natural) within 80 min. Additionally, the effects of the addition of various oxidants, dissolved gases, and organic and inorganic scavengers on the degradation of CFZ were studied. Moreover, the possible sonocatalytic mechanism of the sonochemical degradation of CFZ in the presence of Fe-Cu-LDH/BC sonocatalyst was proposed based on the results of GC–MS analysis. The mineralization of CFZ solution was evaluated using COD and IC analyses. Finally, the reusability test of Fe-Cu-LDH/BC nanocomposite in the CFZ degradation revealed that almost 9% drop occurred after five successive cycles.
KW - Advanced water treatment
KW - Antibiotic degradation
KW - Emerging pollutants
KW - Fe-Cu-LDH/biochar
KW - Nanocomposite
UR - http://www.scopus.com/inward/record.url?scp=85067177489&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2019.120742
DO - 10.1016/j.jhazmat.2019.120742
M3 - Article
C2 - 31204019
AN - SCOPUS:85067177489
SN - 0304-3894
VL - 381
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 120742
ER -