EXPLAINABILITY OF END AND MID-SEASON COTTON YIELD PREDICTORS IN CONUS

Mehmet Furkan Celik, Mustafa Serkan Isik, Esra Erten*, Gustau Camps-Valls

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

2 Citations (Scopus)

Abstract

In this study, we examined the effectiveness of integrating satellite-based crop biophysical parameters, meteorological conditions, and soil properties for the end and mid-season cotton yield prediction in the continental United States (CONUS) region. We employed six machine learning algorithms: decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), gradient boosting (GB), light gradient boosting machine (LightGBM), and extreme gradient boosting machine (XGBoost). By employing this rigorous approach to hyperparameter tuning based on Bayesian optimization, the XGBoost method was found as the best method for both mid-season and end-season cotton yield prediction. Furthermore, we investigated the global importance of temporal and static features using the Shapley Additive Global importancE (SAGE) method to understand the driving factors of cotton yield prediction. As a result of global feature importance analysis, precipitation (P), enhanced vegetation index (EVI), and leaf area index (LAI) were found as the most important temporal features, while silt and pH were found as the most important soil properties.

Original languageEnglish
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
Duration: 16 Jul 202321 Jul 2023

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Country/TerritoryUnited States
CityPasadena
Period16/07/2321/07/23

Bibliographical note

Publisher Copyright:
© 2023 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.

Funding

∗This project entitled ”Improving Resiliency of Malian Farmers with Yield Estimation: IMPRESSYIELD” was funded by the Climate Change AI Innovation Grants program, hosted by Climate Change AI with the additional support of Canada Hub of Future Earth.

FundersFunder number
Climate Change AI

    Fingerprint

    Dive into the research topics of 'EXPLAINABILITY OF END AND MID-SEASON COTTON YIELD PREDICTORS IN CONUS'. Together they form a unique fingerprint.

    Cite this