Abstract
It has been demonstrated that type-2 fuzzy logic systems are much more powerful tools than ordinary (type-1) fuzzy logic systems to represent highly nonlinear and/or uncertain systems. As a consequence, type-2 fuzzy logic systems have been applied in various areas especially in control system design and modelling. In this study, an exact inversion methodology is developed for decomposable interval type-2 fuzzy logic system. In this context, the decomposition property is extended and generalized to interval type-2 fuzzy logic sets. Based on this property, the interval type-2 fuzzy logic system is decomposed into several interval type-2 fuzzy logic subsystems under a certain condition on the input space of the fuzzy logic system. Then, the analytical formulation of the inverse interval type-2 fuzzy logic subsystem output is explicitly driven for certain switching points of the Karnik-Mendel type reduction method. The proposed exact inversion methodology driven for the interval type-2 fuzzy logic subsystem is generalized to the overall interval type-2 fuzzy logic system via the decomposition property. In order to demonstrate the feasibility of the proposed methodology, a simulation study is given where the beneficial sides of the proposed exact inversion methodology are shown clearly.
Original language | English |
---|---|
Pages (from-to) | 253-272 |
Number of pages | 20 |
Journal | International Journal of Approximate Reasoning |
Volume | 54 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2013 |
Funding
This research is supported by a project given to the Scientific Research Project (SPR-BAP 34492) of Institute of Science and Technology of Istanbul Technical University. All of support is appreciated.
Funders | Funder number |
---|---|
Istanbul Teknik Üniversitesi |
Keywords
- Decomposition property
- Interval type-2 fuzzy logic systems
- System inversion