Abstract
In this paper, using a general convolutional neural network (CNN) model, which was developed for object recognition, a successful system has been introduced for the person re-identification problem. To use this CNN model for the person re-identification problem properly, it is individually fine-tuned using different body parts of person images. For feature extraction, we used the seventh layer of the CNN model, which was re-trained with the available datasets. Then, we used cosine similarity metric to calculate the similarity between extracted features. CUHK03 and Market-1501 datasets were used as the training sets and the proposed method has been tested on VIPeR dataset. Superior results have been obtained with the proposed method, compared to the state-of-the-art methods in the field.
Translated title of the contribution | Convolutional neural network-based representation for person re-identification |
---|---|
Original language | Turkish |
Title of host publication | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 945-948 |
Number of pages | 4 |
ISBN (Electronic) | 9781509016792 |
DOIs | |
Publication status | Published - 20 Jun 2016 |
Event | 24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey Duration: 16 May 2016 → 19 May 2016 |
Publication series
Name | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
---|
Conference
Conference | 24th Signal Processing and Communication Application Conference, SIU 2016 |
---|---|
Country/Territory | Turkey |
City | Zonguldak |
Period | 16/05/16 → 19/05/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.