Estimation of significant wave height in shallow lakes using the expert system techniques

Abdüsselam Altunkaynak*, Keh Han Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Significant wave height is an important hydrodynamic variable for the design application and environmental evaluation in coastal and lake environments. Accurate prediction of significant wave height can assist the planning and analysis of lake and coastal projects. In this study, the Genetic Algorithm (GA) is used as the optimization technique to better predict model parameters. Also, Kalman Filtering (KF) is used for prediction of significant wave height from wind speed. KF technique makes predictions based on stochastic and dynamic structures. The integrated Geno Kalman Filtering (GKF) technique is applied to develop predictive models for estimation of significant wave height at stations LZ40, L006, L005 and L001 in Lake Okeechobee, Florida. The results show that the GKF methodology can perform very well in predicting the significant wave height and produce lower mean relative error and mean-square error than those from Artificial Neural Network (ANN) model. The superiority of GKF method over ANN is presented with comparisons of predicted and observed significant wave heights.

Original languageEnglish
Pages (from-to)2549-2559
Number of pages11
JournalExpert Systems with Applications
Volume39
Issue number3
DOIs
Publication statusPublished - 15 Feb 2012

Keywords

  • Artificial Neural Network
  • Dynamic model
  • Genetic Algorithms
  • Kalman Filtering
  • Significant wave height
  • Stochastic

Fingerprint

Dive into the research topics of 'Estimation of significant wave height in shallow lakes using the expert system techniques'. Together they form a unique fingerprint.

Cite this