Abstract
In this study, we demonstrate electrical equivalent circuits that model the complex frequency-dependent impedance of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) containing electro-active polymer membranes and ionic polymer conductor network composite (IPCNC) devices. The devices include Nafion membrane actuators, Nafion coated with layer-by-layer (LbL) Au nanoparticle/poly(allylamine hydrochloride) (PAH) composite actuators, and Nafion with vertically aligned carbon nanotube (VA-CNT)/Nafion composite actuators. It is found that the low frequency responses of these devices indicate Warburg diffusion. Therefore, Warburg impedance is utilized to model the low frequency diffusion behavior of the devices, while the electric double layer capacitance (C dl) represents the storage of drifting ions under electric field at high frequencies. It is found that C dl for Nafion with 40 wt% EMI-Tf is 7.5 μF/cm 2 and increases to 11.4 μF/cm 2 with increasing surface area of the LbL composite electrode. C dl increases further to above 3 × 10 3 μF/cm 2 for an actuator with 12 μm VA-CNT/Nafion composite electrodes, while the Warburg coefficient A W remains nearly the same for all the devices. As a result, the actuation magnitude and speed increase with charges accumulated due to higher C dl, without much increase in the contribution from the slow ion diffusion process.
Original language | English |
---|---|
Pages (from-to) | 70-76 |
Number of pages | 7 |
Journal | Sensors and Actuators A: Physical |
Volume | 181 |
DOIs | |
Publication status | Published - Jul 2012 |
Externally published | Yes |
Funding
This material is based upon work supported in part by the U.S. Army Research Office under Grant No. W911NF-07-1-0452 Ionic Liquids in Electro-Active Devices (ILEAD) MURI and by NSF under Grant No. CMMI-1130437 . At MIT the work was supported by Airbus S.A.S., Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems, Textron Inc., Composite Systems Technology, and TohoTenax Inc. through MIT's Nano-Engineered Composite aerospace Structures (NECST) Consortium. Hülya Cebeci acknowledges support from Scientific and Technical Research Council of Turkey (TUBITAK) for a 2214-International Research Fellowship Programme.
Funders | Funder number |
---|---|
Airbus S.A.S. | |
TUBITAK | |
TohoTenax Inc. | |
National Science Foundation | CMMI-1130437 |
Boeing | |
Army Research Office | W911NF-07-1-0452 |
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu |
Keywords
- Equivalent circuit models
- Ionic electro-active polymers (i-EAPs)
- Ionic polymer actuators
- Warburg diffusion