TY - JOUR
T1 - Enhancing the Kinetic Stability of Polymeric Nanomicelles (PLGA) Using Nano-Montmorillonite for Effective Targeting of Cancer Tumors
AU - Karataş, Deniz
AU - Bahadori, Fatemeh
AU - Tekin, Adem
AU - Ergin Kizilcay, Gamze
AU - Celik, Mehmet Sabri
N1 - Publisher Copyright:
© 2022 American Chemical Society
PY - 2022/1/20
Y1 - 2022/1/20
N2 - The toxic profile of chemical cross-linkers used in enhancing the stability of self-assembled nanomicelles made of amphiphilic polymeric materials hinders their use in clinical applications. This study was aimed to use the layered structure of Na-montmorillonite (MMT) as a stabilizer for nanomicelles made of poly(d,l-lactide-co-glycolide) (PLGA) amphiphilic polymer. The size of Na-MMT was reduced below 40 nm (nano-MMT) by processing in an attritor prior to its incorporation with PLGA. Hybrid PLGA nano-MMT (PM) nanoparticles (NPs) were prepared using dialysis nanoprecipitation. The size distribution was measured using dynamic light scattering (DLS). Loading 1250 μg of the model drug molecule curcumin to PM (PMC) resulted in obtaining 88 nm-sized particles, suitable for passive targeting of cancer tumors. The structure of nano-MMT and its position in PMC were investigated using FT-IR, differential scanning chalorimetry (DSC), XRF, XRD, ESEM, and EDAX assays, all of which showed the exfoliated structure of nano-MMT incorporated with both hydrophilic and hydrophobic blocks of PLGA. Curcumin was mutually loaded to PLGA and nano-MMT. This firm incorporation caused a serious extension in the release of curcumin from PMC compared to PLGA (PC). Fitting the release profile to different mathematical models showed the remarkable role of nano-MMT in surface modification of PLGA NPs. The ex vivo dynamic model showed the enhanced stability of PMC in simulated blood flow, while cytotoxicity assays showed that nano-MMT does not aggravate the good toxic profile of PLGA but improves the anticancer effect of payload. Nano-MMT could be used as an effective nontoxic stabilizer agent for self-assembled NPs.
AB - The toxic profile of chemical cross-linkers used in enhancing the stability of self-assembled nanomicelles made of amphiphilic polymeric materials hinders their use in clinical applications. This study was aimed to use the layered structure of Na-montmorillonite (MMT) as a stabilizer for nanomicelles made of poly(d,l-lactide-co-glycolide) (PLGA) amphiphilic polymer. The size of Na-MMT was reduced below 40 nm (nano-MMT) by processing in an attritor prior to its incorporation with PLGA. Hybrid PLGA nano-MMT (PM) nanoparticles (NPs) were prepared using dialysis nanoprecipitation. The size distribution was measured using dynamic light scattering (DLS). Loading 1250 μg of the model drug molecule curcumin to PM (PMC) resulted in obtaining 88 nm-sized particles, suitable for passive targeting of cancer tumors. The structure of nano-MMT and its position in PMC were investigated using FT-IR, differential scanning chalorimetry (DSC), XRF, XRD, ESEM, and EDAX assays, all of which showed the exfoliated structure of nano-MMT incorporated with both hydrophilic and hydrophobic blocks of PLGA. Curcumin was mutually loaded to PLGA and nano-MMT. This firm incorporation caused a serious extension in the release of curcumin from PMC compared to PLGA (PC). Fitting the release profile to different mathematical models showed the remarkable role of nano-MMT in surface modification of PLGA NPs. The ex vivo dynamic model showed the enhanced stability of PMC in simulated blood flow, while cytotoxicity assays showed that nano-MMT does not aggravate the good toxic profile of PLGA but improves the anticancer effect of payload. Nano-MMT could be used as an effective nontoxic stabilizer agent for self-assembled NPs.
UR - http://www.scopus.com/inward/record.url?scp=85123382269&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.1c07334
DO - 10.1021/acs.jpcb.1c07334
M3 - Article
C2 - 35005971
AN - SCOPUS:85123382269
SN - 1520-6106
VL - 126
SP - 463
EP - 479
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 2
ER -