Enhancing E-Commerce Query Expansion Using Generative Adversarial Networks (GANs)

Altan Cakir, Mert Gurkan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this study, we propose an innovative approach to query expansion (QE) in e-commerce, aiming to enhance the effectiveness of information search. Our method utilizes a generative adversarial network (GAN) called modified QE conditional GAN (mQE-CGAN) to expand queries by generating synthetic queries that incorporate semantic information from textual input. The (mQE-CGAN) framework consists of a generator and a discriminator. The generator is a sequence-to-sequence transformer model trained to produce keywords, while the discriminator is a recurrent neural network model used to classify the generator’s output in an adversarial manner. By incorporating a modified CGAN framework, we introduce various forms of semantic insights from the query-document corpus into the generation process. These insights serve as conditions for the generator model and are instrumental in improving the query expansion task. Through various preliminary experiments, we demonstrate that the utilization of condition structures within the mQE-CGAN framework significantly enhances the semantic similarity between the generated sequences and reference documents. Compared to baseline models, our approach achieves an impressive increase of approximately 5–10% in semantic similarity.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
EditorsCengiz Kahraman, Irem Ucal Sari, Basar Oztaysi, Sezi Cevik Onar, Selcuk Cebi, A. Çağrı Tolga
PublisherSpringer Science and Business Media Deutschland GmbH
Pages491-498
Number of pages8
ISBN (Print)9783031397769
DOIs
Publication statusPublished - 2023
EventIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference - Istanbul, Turkey
Duration: 22 Aug 202324 Aug 2023

Publication series

NameLecture Notes in Networks and Systems
Volume759 LNNS
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
Country/TerritoryTurkey
CityIstanbul
Period22/08/2324/08/23

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • E-Commerce
  • Generative Adversarial Networks
  • Information Retrieval

Fingerprint

Dive into the research topics of 'Enhancing E-Commerce Query Expansion Using Generative Adversarial Networks (GANs)'. Together they form a unique fingerprint.

Cite this