Emotional State Estimation using Sensor Fusion of EEG and EDA

Mine Yasemin, Mehmet Ali Sarikaya, Gokhan Ince

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Emotions potentially have a significant impact on human actions and recognizing affective states is an effective way of implementing Brain-Computer Interface (BCI) systems which process brain signals to allow direct communication and interaction with the environment. In this paper, a real-time emotion recognition model was developed on the basis of physiological signals. A sensor fusion method is developed to detect human emotion by using data acquired from ElectroEncephaloGraphy (EEG) and ElectroDermal Activity (EDA) sensors. The proposed physiology-based emotion recognition system using a neural network was implemented and tested on human subjects, and a classification accuracy of 94% on three different emotions was achieved.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5609-5612
Number of pages4
ISBN (Electronic)9781538613115
DOIs
Publication statusPublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Fingerprint

Dive into the research topics of 'Emotional State Estimation using Sensor Fusion of EEG and EDA'. Together they form a unique fingerprint.

Cite this