Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon

Fuat Topuz*, Tamer Uyar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

91 Citations (Scopus)

Abstract

The electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon was shown, and the detailed studies were conducted to correlate the fiber morphology with electrospinning process parameters and gelatin concentration in electrospinning solution. Particularly, variations in the applied voltage and the concentration of gelatin led to the transition of fiber shape from round to flat/ribbon. The formation of flat-shaped fibers was attributed to rapid evaporation of the solvent (formic acid) from the fiber matrix with increasing the applied voltage and gelatin concentration. On the other hand, round fibers were due to the steady evaporation of formic acid throughout the cross-section of fibers. WAXS analysis revealed that the loss of triple-helical crystalline structure in gelatin after the electrospinning process. The gelatin fibers were cross-linked through treatment with toluene 2,4-diisocyanate (TDI) in a mixed solution of acetone and pyridine, and XPS confirmed the cross-linking of the fibers over an increased carbon content on the elemental composition of the fiber surface due to the incorporated TDI moieties. Overall, this study focuses on morphological tuning of gelatin electrospun fibers towards a flat/ribbon-like structure by variation of electrospinning parameters and polymer concentration, and thus, the proposed concept can be adapted towards flattened/ribbon-like fibers of other protein-based systems by electrospinning.

Original languageEnglish
Pages (from-to)371-378
Number of pages8
JournalMaterials Science and Engineering C
Volume80
DOIs
Publication statusPublished - 1 Nov 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 Elsevier B.V.

Funding

T. U. acknowledges the partial support from Turkish Academy of Sciences - Outstanding Young Scientists Award Program (TUBA-GEBIP). F. T. thanks the TUBITAK Co-Funded Brain Circulation Scheme (project number: 116C031).

FundersFunder number
TUBA-GEBIP
TUBITAK Co-Funded Brain Circulation Scheme116C031
Türkiye Bilimler Akademisi

    Keywords

    • Cross-linking
    • Electrospinning
    • Flat/ribbon fibers
    • Gelatin
    • Nanofibers

    Fingerprint

    Dive into the research topics of 'Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon'. Together they form a unique fingerprint.

    Cite this