Abstract
An electromagnetic imaging scheme, which makes use of a single-frequency reverse time migration (RTM) technique to reconstruct two-dimensional (2D) rough surface profiles from the scattered field data, is formulated and implemented. The unknown surface profile, which is expressed as a one-dimensional height function, is the interface between two dielectric media. It is assumed that the profile is illuminated from one side and the scattered fields are 'measured' along a line on this same side. RTM is used to construct a cross-correlation imaging functional that is numerically evaluated to yield an image of the investigation domain. The maxima of this functional yields an accurate reconstruction of the rough dielectric surface profile.
Original language | English |
---|---|
Title of host publication | 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2023 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 467-468 |
Number of pages | 2 |
ISBN (Electronic) | 9781665442282 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2023 - Portland, United States Duration: 23 Jul 2023 → 28 Jul 2023 |
Publication series
Name | IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) |
---|---|
Volume | 2023-July |
ISSN (Print) | 1522-3965 |
Conference
Conference | 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2023 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 23/07/23 → 28/07/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- electromagnetic imaging
- Inverse electromagnetic scattering
- reverse time migration
- rough surface