TY - JOUR
T1 - Electrochromic properties of tetrabutylammonium perchlorate-doped polypyrrole/ nanocellulose composite films
AU - Jusufovic, Sabina
AU - Bastemur, Gizem Yildirim
AU - Evecan, Dilek
AU - Ozkorucuklu, Sabriye Percin
AU - Zayim, Esra
AU - Kalyon, Goksenin
AU - Candan, Zeki
AU - Durmaz, Ekrem
AU - Tozluoglu, Ayhan
AU - Erol, Ayse
N1 - Publisher Copyright:
© 2025
PY - 2025/2/1
Y1 - 2025/2/1
N2 - This study investigates electrochromic properties of tetrabutylammonium perchlorate (TBAP)-doped polypyrrole (PPy) and PPy/Nanocellulose (NC) composite films, where TBAP-doped PPy/NC composites were synthesized with various NC content ranging from 0 % to 100 % by volume in 0.1 M pyrrole solution and deposited on fluorine-doped tin oxide (FTO) glass using potentiostatic polymerization. The optimum polymerization time for depositing a uniform, adhesive and stable films on FTO with higher optical contrast between bleached and colored states are found to be 10 s at a constant voltage of 1.2 V. To compare the electrochromic properties of NC-free and NC-containing TBAP-doped PPy films, cyclic voltammetry (CV), chronoamperometry (CA), and optical transmittance spectroscopy were carried out in 0.1 M TBAP electrolyte. A reversible color change from yellow at – 0.6 V (bleached state) to blue gray at + 0.6 V (colored state) is observed for %40 NC-containing TBAP-doped PPy composite film. CV measurements at the potential between – 0.8 V and + 0.8 V show an increase at the oxidation and reduction peak currents up to 60 % NC in TBAP-doped PPy, but the highest optical contrast and uniformity is observed for 40 % NC-containing composite film. And scanning electron microscopy images reveal that surface morphology changes and cluster/agglomerations on the surface of the films are formed when the %NC value exceeds 60 %. Of the NC-containing composite films, the 40 % NC-containing TBAP-doped PPy composite film exhibits the best adhesion to FTO substrate. Furthermore, the highest optical contrast (25.9 % at 700 nm) is observed for %40 NC-containing TBAP-doped PPy when compared to NC-free TBAP-doped PPy film (18.7 % at 700 nm). Therefore, PPy/NC composite with 40 % volume ratio of NC in PPy was selected for further CV and CA experiments. Compared to NC-free films, 40 % NC-containing TBAP-doped PPy exhibits faster switching time (1.16 s), higher optical contrast (25.9 % at 700 nm), higher coloration efficiency (65.6 cm2/C), and better uniformity on FTO. Our results may lead to the design of a high-performance electrochromic devices using NC[sbnd]Conductive Polymers, with electrochromic and mechanical properties that can be adjusted through NC composition, especially to create flexible composites with enhanced mechanical strength.
AB - This study investigates electrochromic properties of tetrabutylammonium perchlorate (TBAP)-doped polypyrrole (PPy) and PPy/Nanocellulose (NC) composite films, where TBAP-doped PPy/NC composites were synthesized with various NC content ranging from 0 % to 100 % by volume in 0.1 M pyrrole solution and deposited on fluorine-doped tin oxide (FTO) glass using potentiostatic polymerization. The optimum polymerization time for depositing a uniform, adhesive and stable films on FTO with higher optical contrast between bleached and colored states are found to be 10 s at a constant voltage of 1.2 V. To compare the electrochromic properties of NC-free and NC-containing TBAP-doped PPy films, cyclic voltammetry (CV), chronoamperometry (CA), and optical transmittance spectroscopy were carried out in 0.1 M TBAP electrolyte. A reversible color change from yellow at – 0.6 V (bleached state) to blue gray at + 0.6 V (colored state) is observed for %40 NC-containing TBAP-doped PPy composite film. CV measurements at the potential between – 0.8 V and + 0.8 V show an increase at the oxidation and reduction peak currents up to 60 % NC in TBAP-doped PPy, but the highest optical contrast and uniformity is observed for 40 % NC-containing composite film. And scanning electron microscopy images reveal that surface morphology changes and cluster/agglomerations on the surface of the films are formed when the %NC value exceeds 60 %. Of the NC-containing composite films, the 40 % NC-containing TBAP-doped PPy composite film exhibits the best adhesion to FTO substrate. Furthermore, the highest optical contrast (25.9 % at 700 nm) is observed for %40 NC-containing TBAP-doped PPy when compared to NC-free TBAP-doped PPy film (18.7 % at 700 nm). Therefore, PPy/NC composite with 40 % volume ratio of NC in PPy was selected for further CV and CA experiments. Compared to NC-free films, 40 % NC-containing TBAP-doped PPy exhibits faster switching time (1.16 s), higher optical contrast (25.9 % at 700 nm), higher coloration efficiency (65.6 cm2/C), and better uniformity on FTO. Our results may lead to the design of a high-performance electrochromic devices using NC[sbnd]Conductive Polymers, with electrochromic and mechanical properties that can be adjusted through NC composition, especially to create flexible composites with enhanced mechanical strength.
KW - Cellulose
KW - Conductive polymers
KW - Electrochromic
KW - Electrochromism
KW - Electropolymerization
KW - Nanocellulose
KW - PPy
KW - Polypyrrole
UR - http://www.scopus.com/inward/record.url?scp=85215417416&partnerID=8YFLogxK
U2 - 10.1016/j.tsf.2025.140606
DO - 10.1016/j.tsf.2025.140606
M3 - Article
AN - SCOPUS:85215417416
SN - 0040-6090
VL - 811
JO - Thin Solid Films
JF - Thin Solid Films
M1 - 140606
ER -