Efficient Learning of Fuzzy Logic Systems for Large-Scale Data Using Deep Learning

Ata Köklü, Yusuf Güven, Tufan Kumbasar*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Type-1 and Interval Type-2 (IT2) Fuzzy Logic Systems (FLS) excel in handling uncertainty alongside their parsimonious rule-based structure. Yet, in learning large-scale data challenges arise, such as the curse of dimensionality and training complexity of FLSs. The complexity is due mainly to the constraints to be satisfied as the learnable parameters define FSs and the complexity of the center of the sets calculation method, especially of IT2-FLSs. This paper explicitly focuses on the learning problem of FLSs and presents a computationally efficient learning method embedded within the realm of Deep Learning (DL). The proposed method tackles the learning challenges of FLSs by presenting computationally efficient implementations of FLSs, thereby minimizing training time while leveraging mini-batched DL optimizers and automatic differentiation provided within the DL frameworks. We illustrate the efficiency of the DL framework for FLSs on benchmark datasets.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Systems - Intelligent Industrial Informatics and Efficient Networks Proceedings of the INFUS 2024 Conference
EditorsCengiz Kahraman, Sezi Cevik Onar, Selcuk Cebi, Basar Oztaysi, Irem Ucal Sari, A. Cagrı Tolga
PublisherSpringer Science and Business Media Deutschland GmbH
Pages406-413
Number of pages8
ISBN (Print)9783031700170
DOIs
Publication statusPublished - 2024
EventInternational Conference on Intelligent and Fuzzy Systems, INFUS 2024 - Canakkale, Turkey
Duration: 16 Jul 202418 Jul 2024

Publication series

NameLecture Notes in Networks and Systems
Volume1088 LNNS
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceInternational Conference on Intelligent and Fuzzy Systems, INFUS 2024
Country/TerritoryTurkey
CityCanakkale
Period16/07/2418/07/24

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Keywords

  • big data
  • deep learning
  • Fuzzy logic systems
  • learning

Fingerprint

Dive into the research topics of 'Efficient Learning of Fuzzy Logic Systems for Large-Scale Data Using Deep Learning'. Together they form a unique fingerprint.

Cite this