Effects of the structural layer material and its thickness on positive displacement piezoelectric micropump performance

Ersin Sayar, Bakhtier Farouk

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Structural dynamic and fluid flow analysis of positive displacement piezoelectric micropumps are carried out for microfluidic water transport applications. The micropump consists of trapezoidal prism inlet/outlet elements; the pump chamber; a thin structural layer and a piezoelectric transducer element. Governing equations for the flow fields; the structuralpiezoelectric bi-layer membrane motions and electrical variables are considered. Two-way dynamic coupling of forces and displacements between the solid and the liquid domains in the systems are considered. The effects of the structural layer material selection and the thickness of thin structural layer on the structural deformation and fluid flow are investigated. The variation the structural layer material and its thickness enable the selection of the best micropump design among the investigated micropumps made of silicon and Pyrex glass while other parameters are kept unchanged. The change of the structural layer material is considered here through the variation of density, Young's modulus and Poisson's ratio. Optimum membrane thickness is also investigated aiming to generate higher rates of time-averaged flow for the selected micropump structural layer material. The present study is useful in the implementation of the micropumps into lab-on-a-chip microfluidic systems.

Original languageEnglish
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857533
DOIs
Publication statusPublished - 2015
EventASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015 - Houston, United States
Duration: 13 Nov 201519 Nov 2015

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10-2015

Conference

ConferenceASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Country/TerritoryUnited States
CityHouston
Period13/11/1519/11/15

Bibliographical note

Publisher Copyright:
Copyright © 2015 by ASME.

Fingerprint

Dive into the research topics of 'Effects of the structural layer material and its thickness on positive displacement piezoelectric micropump performance'. Together they form a unique fingerprint.

Cite this