TY - GEN

T1 - Effects of particle-wall interactions on the thermodynamic behavior of gases at the nano scale

AU - Firat, Coskun

AU - Sisman, Altug

PY - 2010

Y1 - 2010

N2 - The thermodynamic behavior of gases confined in nano structures is considerably different than those in macro ones due to the effects of both particle-wall interactions and the wave character of particles. The homogeneous density distribution of a gas at thermodynamic equilibrium is disturbed by these effects. Because of particle-wall interactions, the local density of a gas changes drastically near the domain boundaries. Also, the wave character of the particles causes an inhomogeneous density distribution, especially near the boundaries. Consequently, the apparent density (number of particles over the domain volume) is different than the real one. All the density-dependent thermodynamic properties are affected by the inhomogeneity in the density distribution. Therefore, it is important to consider these effects on local density to analyse the thermodynamic behaviors of gases confined in nano structures. The detailed analysis of these effects on local density also gives a base of knowledge for the experimental verification of quantum size effects on local density due to the wave character of particles. In this study, the density distributions of classical (Maxwellian) and quantum (both Fermi and Bose) gases are calculated and investigated by considering both particle-wall interactions and quantum size effects. The results can be used for experimental verification of quantum size effects on gas density as well as the modeling of nano heat engines.

AB - The thermodynamic behavior of gases confined in nano structures is considerably different than those in macro ones due to the effects of both particle-wall interactions and the wave character of particles. The homogeneous density distribution of a gas at thermodynamic equilibrium is disturbed by these effects. Because of particle-wall interactions, the local density of a gas changes drastically near the domain boundaries. Also, the wave character of the particles causes an inhomogeneous density distribution, especially near the boundaries. Consequently, the apparent density (number of particles over the domain volume) is different than the real one. All the density-dependent thermodynamic properties are affected by the inhomogeneity in the density distribution. Therefore, it is important to consider these effects on local density to analyse the thermodynamic behaviors of gases confined in nano structures. The detailed analysis of these effects on local density also gives a base of knowledge for the experimental verification of quantum size effects on local density due to the wave character of particles. In this study, the density distributions of classical (Maxwellian) and quantum (both Fermi and Bose) gases are calculated and investigated by considering both particle-wall interactions and quantum size effects. The results can be used for experimental verification of quantum size effects on gas density as well as the modeling of nano heat engines.

KW - Density distribution

KW - Lennard-jones potential

KW - Quantum size effects

KW - Thermodynamic properties

UR - http://www.scopus.com/inward/record.url?scp=84896091046&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:84896091046

SN - 9781456303006

T3 - Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010

SP - 439

EP - 447

BT - Thermodynamics

PB - Aabo Akademi University

T2 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010

Y2 - 14 June 2010 through 17 June 2010

ER -