Abstract
This study reports for the first time the production and characterization of Mn2O3/NiMnO3 (MO/NMO) powders by the hydrothermal method and the enhanced performance of this electrode upon the addition of 15 vol% vinylene carbonate (VC) into the electrolyte. Cyclic voltammetry and electrochemical impedance spectroscopy tests show that the lithiation mechanism of MO/NMO changes upon the presence of VC in the electrolyte. The galvanostatic tests’ results reveal that when half-cells have been tested with 15 vol% VC-containing electrolyte the anode delivers higher discharge capacity (793 mAh g−1 at 100 mA g−1, 535 mAh g−1 at 400 mA g−1) and capacity retention, in comparison to that of the standard electrolyte. Finally, XRD and post-SEM analyses’ outcomes substantiate that the addition of VC into the standard electrolyte promotes the formation of a stable electrode/electrolyte interface. The improved solid electrolyte interface (SEI) properties caused by VC addition prevent any peel off and/or delamination, resulting in high electrochemical performance over cycles.
Original language | English |
---|---|
Pages (from-to) | 2813-2824 |
Number of pages | 12 |
Journal | Ionics |
Volume | 27 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- Electrolyte
- Lithium-ion battery
- Negative electrode
- SEI layer
- Vinylene carbonate