Abstract
Antibiotic resistance is frequently being observed in treated urban effluents as an alarming wastewater treatment issue and health risk. The potential of UV-A-assisted iron-based and UV-C-driven advanced oxidation processes to inactivate the ABR E. coli J53 strain bacteria and its aphA (kanamycin resistance gene) and tetA (tetracycline resistance gene) located on the plasmid RP4 was investigated in real tertiary treated urban wastewater. Besides inactivation performance, dissolved organic carbon (DOC) removals were also followed to evaluate the mineralization degree that could be achieved by the proposed photochemical/photocatalytic treatment systems. For UV-A-assisted Fenton/Fenton-like processes, antibiotic resistance and DOC removals (≈20 %) were rather limited. UV-C activation of the oxidants hydrogen peroxide (HP), persulfate (PS) and peroxymonosulfate (PMS) were the key photochemical advanced oxidation processes for efficient inactivation of multi-resistant E. coli bacteria (>6.5-log reduction) and gene copies (>3.0-log reduction) as well. Besides, 31 %, 40 % and 59 % DOC removals were achieved at a UV dose of 0.45 W/m2 for 2.0 mM HP-, PMS- and PS/UV-C treatments, respectively.
Original language | English |
---|---|
Pages (from-to) | 152-158 |
Number of pages | 7 |
Journal | Catalysis Today |
Volume | 361 |
DOIs | |
Publication status | Published - 1 Feb 2021 |
Bibliographical note
Publisher Copyright:© 2020
Funding
The authors are thankful to Istanbul Technical University under Project Nr. MGA-2018-41117.
Funders | Funder number |
---|---|
Istanbul Teknik Üniversitesi | MGA-2018-41117 |
Keywords
- Antibiotic resistance
- Disinfection
- Photochemical advanced oxidation processes
- Tertiary treated urban wastewater
- UV-C activation of oxidants