TY - JOUR
T1 - Effect of scanning strategies and laser parameters on metal-composite joining
AU - Kuzu, Ali Taner
AU - Karaguzel, Umut
AU - Erbay, Batiray
AU - Bakkal, Mustafa
N1 - Publisher Copyright:
© 2021 Taylor & Francis.
PY - 2021
Y1 - 2021
N2 - This study presents an investigation on the effectiveness, automation characteristics, and mechanics of joints between different material types namely glass fiber reinforced plastics (GFRPs) and SS304 stainless steel using an industrial Nd: YAG continuous-wave laser welder and a 2-axis custom design jig. The custom design jig includes computer-controlled (CNC) step motors, which provide high accuracy position control of the selected laser patterns. Four different patterns (Linear Curve, Hilbert Curve, Triangle Weave, and Curlique Weave) are investigated under different process parameters (laser power, lap joint length, and traveling speed) to obtain more robust joints. The strength of the joint is examined by variance analysis and found that the laser power and the pattern are the most important factors. Tensile shear tests present that the best-resulted joint carried around 4000 N before fracture. Polymer vaporization resulted in sub-millimeter sized bubbles that are widely formed inside the molten zone of the GFRP specimen. Therefore, a strong joint between GFRP and SS304 stainless steel could be obtained by a direct laser joining process at low power, with load adaptable space-filling curve patterns and without needing surface pretreatment, sophisticated clamps or high clamping forces.
AB - This study presents an investigation on the effectiveness, automation characteristics, and mechanics of joints between different material types namely glass fiber reinforced plastics (GFRPs) and SS304 stainless steel using an industrial Nd: YAG continuous-wave laser welder and a 2-axis custom design jig. The custom design jig includes computer-controlled (CNC) step motors, which provide high accuracy position control of the selected laser patterns. Four different patterns (Linear Curve, Hilbert Curve, Triangle Weave, and Curlique Weave) are investigated under different process parameters (laser power, lap joint length, and traveling speed) to obtain more robust joints. The strength of the joint is examined by variance analysis and found that the laser power and the pattern are the most important factors. Tensile shear tests present that the best-resulted joint carried around 4000 N before fracture. Polymer vaporization resulted in sub-millimeter sized bubbles that are widely formed inside the molten zone of the GFRP specimen. Therefore, a strong joint between GFRP and SS304 stainless steel could be obtained by a direct laser joining process at low power, with load adaptable space-filling curve patterns and without needing surface pretreatment, sophisticated clamps or high clamping forces.
UR - http://www.scopus.com/inward/record.url?scp=85104074137&partnerID=8YFLogxK
U2 - 10.1080/10426914.2021.1905827
DO - 10.1080/10426914.2021.1905827
M3 - Article
AN - SCOPUS:85104074137
SN - 1042-6914
VL - 36
SP - 1199
EP - 1207
JO - Materials and Manufacturing Processes
JF - Materials and Manufacturing Processes
IS - 10
ER -