Effect of Photocatalytic Pretreatment on the Membrane Performance in Nanofiltration of Textile Wastewater

Sevde Korkut, Türkan Ormanci-Acar, Basak Keskin, Meltem Ağtaş, Özlem Karahan, Tuğba U. Demir, Serkan Unal, Yusuf Z. Menceloglu, Ismail Koyuncu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Traditional methods like biological treatment, flocculation-coagulation, adsorption, and advanced oxidation are commonly employed for textile wastewater treatment, but their sustainability is hindered by issues such as the adverse impact of textile wastewater on microorganisms and the requirement for substantial chemical usage. In response to increasingly stringent legal discharge standards, membrane technologies are emerging as prominent alternatives for effective textile wastewater treatment. The application of photocatalysis as a pretreatment to improve effluent quality and treatment performance has shown effective results in the treatment of textile wastewater by nanofiltration (NF). However, innovative solutions are needed to improve the efficiency of UV photocatalytic reactors. Here, the TiO2/halloysite nanotube (HNT) photocatalyst was shown to completely remove dyes under UV illumination. Two wastewater samples from photocatalytic (PC) pretreatment were treated using innovative NF membranes with different contents. The study examined the impact of PC pretreatment on the flux of wastewater from a textile factory heat recovery tank, which increased from 18.32 to 27.63 L/m2.h. The membranes achieved > 98% removal in COD, while bare membrane achieved 95% removal in conductivity. The addition of s-DADPS as monomer and HNT as nanoparticles to the membranes with different compositions affected the cross-linking in the TFC layer. During the tests conducted on the water extracted from the dyeing tank, the color was completely eliminated without any loss of flux. Additionally, improvements in COD removal were observed.

Original languageEnglish
Article number266
JournalWater, Air, and Soil Pollution
Volume235
Issue number5
DOIs
Publication statusPublished - May 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • Nanocomposite membranes
  • Nanofiltration
  • Photocatalysis
  • Wastewater treatment

Fingerprint

Dive into the research topics of 'Effect of Photocatalytic Pretreatment on the Membrane Performance in Nanofiltration of Textile Wastewater'. Together they form a unique fingerprint.

Cite this