Abstract
Formation of nickel-boron-molybdenum (Ni-B-Mo) coating on steel by electroless plating and evaluation of their morphology, hardness and tribological properties post heat treatment at different temperatures for 1 h is investigated. The 25 μm thick coating is uniform and adhesion between the substrate and coating is good. Ni-B-Mo coating was amorphous-like structure in their as-plated condition and by 400°C heat-treated coating, nickel fully crystallized and nickel borides and molybdenum carbide were formed. All coatings exhibited higher hardness than the substrate steel. Hardness values of all coatings up to 400°C did not change distinctively but decreased partly beyond 400°C. Friction coefficient reached lowest value post heat treatment at 300°C but later increased with increasing tempering temperature. Wear resistance was lowest in as-plated coating; however it reached the highest value at 300°C. Worn surface of the coatings showed the abrasive wear as the dominant wear mechanism. An additional adhesive wear mechanism was detected in coating tempered at 550°C. Moreover, our results confirmed that the molybdenum addition improved the thermal stability of the resulting coating. Therefore, Ni-B-Mo coating has potential for application in precision mould, optical parts mould or bipolar plates, where thermal stability is essential.
Original language | English |
---|---|
Article number | 1550058 |
Journal | Surface Review and Letters |
Volume | 22 |
Issue number | 5 |
DOIs | |
Publication status | Published - 28 Oct 2015 |
Bibliographical note
Publisher Copyright:© 2015 World Scientific Publishing Company.
Keywords
- coating
- Electroless
- heat treatment
- Ni-B-Mo
- thermal stability
- tribological properties