Eco-friendly biosynthesized silver, copper, and nickel nanoparticles mediated Rheum ribes: Assessment of their cytotoxicity and antimicrobial activity

Bahri Gür*, Mustafa Cengiz, Canan Vejselova Sezer, Orhan Baytar, Ömer Şahin, Adnan Ayhanci, Hatice Mehtap Kutlu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The green synthesis of metallic nanoparticles has recently become a research area of increasing interest due to their potential applications in nanomedicine. Aim of study: This study aimed to investigate, for the first time, the anticancer properties of silver nanoparticles (Ag-NPs), copper oxide nanoparticles (CuO-NPs), and nickel oxide nanoparticles (NiO-NPs) on A549 and Beas-2B cell lines, as well as their antibacterial efficacy against Escherichia coli and Staphylococcus aureus strains, synthesized through a green synthesis approach utilizing Rheum ribes plant extract. Methodology: The current study introduces a sustainable and environmentally friendly method for the biosynthesis of Ag-NPs, CuO-NPs, and NiO-NPs utilizing the aqueous extract of Rhubarb (Rheum ribes). The spectroscopic and morphological properties of the Ag-NPs, CuO-NPs, and NiO-NPs obtained from the Rheum ribes extract were confirmed using different analytical techniques. Results: The Ag-NPs, CuO-NPs, and NiO-NPs exhibited different morphology with a size of about 7.90, 12.0, and 12.63 nm, respectively, and were free of impurities and highly stable particles. In addition, the NPs were further investigated for their anticancer and antibacterial properties. The anticancer effects of the NPs were assessed using the MTT assay and confocal microscopy in non-small cell lung cancer (A549) and healthy lung (Beas-2B) cells. The study results demonstrated that Ag-NPs, CuO-NPs, and NiO-NPs had cytotoxic effects on A549 cells that were concentration-based, having IC50 values of 4.16, 21.28, and 37.68 μg/mL, in that order. Additionally, it was observed that the above-mentioned NPs exhibited strong activity against bacteria. Conclusions: The nanoparticles derived from Rheum ribes extract appear to hold great potential as a class of nano-biomaterials intended for usage in biological fields.

Original languageEnglish
Article number113755
JournalInorganic Chemistry Communications
Volume172
DOIs
Publication statusPublished - Feb 2025

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

Keywords

  • Anti-bacterial agent
  • Green synthesis
  • Lung cancer
  • Metal nanoparticles
  • Polydispersity index
  • Tauc plot

Fingerprint

Dive into the research topics of 'Eco-friendly biosynthesized silver, copper, and nickel nanoparticles mediated Rheum ribes: Assessment of their cytotoxicity and antimicrobial activity'. Together they form a unique fingerprint.

Cite this