Dynamical properties of the two-dimensional Holstein-Hubbard model in the normal state at zero temperature: A fluctuation-based effective cumulant approach

T. Hakioğlu, M. Ye Zhuravlev

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The two-dimensional many-body Holstein-Hubbard model in the (Formula presented) normal state is examined within the framework of the self-consistent coupling of charge fluctuation correlations to the vibrational ones. The parameters of our model are the adiabaticity, the electron concentration, as well as the electron-phonon and the Coulomb interaction strengths. A fluctuation-based effective cumulant approach is introduced to examine the (Formula presented) normal-state fluctuations and an analytic approximation to the true dynamical entangled ground state is suggested. Our results for the effective charge-transfer amplitude, the ground state energy, the fluctuations in the phonon population, the phonon softening as well as the coupling constant renormalizations suggest that, the recent numerical calculations of de Mello and Ranninger (Ref. 5), Berger, Valášek, and von der Linden (Ref. 2), and Marsiglio (Refs. 4 and 8) on systems with finite degrees of freedom can be qualitatively extended to the systems with large degrees of freedom.

Original languageEnglish
Pages (from-to)3777-3793
Number of pages17
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume58
Issue number7
DOIs
Publication statusPublished - 1998
Externally publishedYes

Fingerprint

Dive into the research topics of 'Dynamical properties of the two-dimensional Holstein-Hubbard model in the normal state at zero temperature: A fluctuation-based effective cumulant approach'. Together they form a unique fingerprint.

Cite this