Abstract
We propose an efficient radio resource scheduling (RRS) approach based on the existing dynamic resource block structure (D-RBS). The proposed RRS is more responsive to variations in traffic demand. More specifically, small-sized resource blocks (RB)s are allocated to user equipments (UE)s to handle the changes in the traffic needs and link failures. The proposed approach enables low latency communication without the use of punctured mini-slot based scheduling methods. Thus, the performance of enhanced mobile broadband (eMBB) UEs or cells is not degraded while prioritizing ultra-reliable low latency communication (URLLC) UEs. The available RBs are distributed using traditional scheduling algorithms such as round robin (RR), proportional fair (PF), and best channel quality indicator (BCQI). Also, the proposed scheme allows the dynamic switching of RR and BCQI scheduling based on specific thresholds, such as signal-to-noise ratio (SNR) values. System-level simulations (SLS)s are performed to evaluate the performance of the proposed approach against the conventional static resource block structure (S-RBS) approach. The simulation results demonstrate that the developed approach provides robust data rate, system throughput, spectral efficiency (SE), and achievable rate per UE for various fifth generation (5G) services.
Original language | English |
---|---|
Title of host publication | 2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665482431 |
DOIs | |
Publication status | Published - 2022 |
Event | 95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring - Helsinki, Finland Duration: 19 Jun 2022 → 22 Jun 2022 |
Publication series
Name | IEEE Vehicular Technology Conference |
---|---|
Volume | 2022-June |
ISSN (Print) | 1550-2252 |
Conference
Conference | 95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring |
---|---|
Country/Territory | Finland |
City | Helsinki |
Period | 19/06/22 → 22/06/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Funding
This work has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant No. 5190014.
Funders | Funder number |
---|---|
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | 5190014 |
Keywords
- 5G systems
- D-RBS scheduling
- Dynamic frame structure
- resource allocation
- resource block.