Drought intensity-duration-frequency curves based on deficit in precipitation and streamflow for water resources management

Yonca Cavus*, Kerstin Stahl, Hafzullah Aksoy

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Drought estimates in terms of physically measurable variables such as precipitation deficit or streamflow deficit are key knowledge for an effective water management. How these deficits vary with the drought event severity indicated by commonly used standardized indices is often unclear. Drought severity calculated from the drought index does not necessarily correspond to the same amount of deficit in precipitation or streamflow at different regions, and it is different for each month in the same region. We investigate drought to remove this disadvantage of the index-based drought intensity-duration-frequency (IDF) curves and develop IDF curves in terms of the associated deficit. In order to study the variation of deficits, we use the link between precipitation and streamflow and the associated indices, the Standardized Precipitation Index (SPI) and the Standardized Streamflow Index (SSI). More specifically, the analysis relies on frequency analysis combined with the total probability theorem applied to the critical drought severity. The critical drought has varying durations, and it is extracted from dry periods. IDF curves in terms of precipitation and streamflow deficits for the most severe drought of each drought duration in each year are then subject to comparison of statistical characteristics of droughts for different return periods. Precipitation and streamflow data from two catchments, the Seyhan River (Türkiye) and the Kocher River (Germany), provide examples for two climatically and hydrologically different cases. A comparison of the two cases allows a similar method to be tested in different hydrological conditions. We found that precipitation and streamflow deficits vary systematically, reflecting seasonality and the magnitude of precipitation and streamflow characteristics of the catchments. Deficits change from one month to another at a given station. Higher precipitation deficits were observed in winter months compared to summer months. Additionally, we assessed observed past major droughts experienced in both catchments on the IDF curves, which show that the major droughts have return periods at the order of 100 years at short durations. This coincides with the observation in the catchments and shows the applicability of the IDF curves. The IDF curves can be considered a tool for using in a range of specific activities of agriculture, ecology, industry, energy and water supply, etc. This is particularly important to end users and decision-makers to act against the drought quickly and precisely in a more physically understandable manner.

Original languageEnglish
Pages (from-to)3427-3445
Number of pages19
JournalHydrology and Earth System Sciences
Volume27
Issue number18
DOIs
Publication statusPublished - 27 Sept 2023

Bibliographical note

Publisher Copyright:
© 2023 Yonca Cavus et al.

Funding

The first author was funded by the DAAD “Research Grants – Bi-nationally Supervised Doctoral Degrees/Cotutelle” program under grant no. 91772148. This open-access publication was funded by the University of Freiburg.

FundersFunder number
Deutscher Akademischer Austauschdienst91772148
Albert-Ludwigs-Universität Freiburg

    Fingerprint

    Dive into the research topics of 'Drought intensity-duration-frequency curves based on deficit in precipitation and streamflow for water resources management'. Together they form a unique fingerprint.

    Cite this