Directional dual-tree rational-dilation complex wavelet transform

Gorkem Serbes, Halil Ozcan Gulcur, Nizamettin Aydin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1465-1468
Number of pages4
ISBN (Electronic)9781424479290
DOIs
Publication statusPublished - 2 Nov 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 26 Aug 201430 Aug 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period26/08/1430/08/14

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Fingerprint

Dive into the research topics of 'Directional dual-tree rational-dilation complex wavelet transform'. Together they form a unique fingerprint.

Cite this