Dictionary learning based image descriptor for myocardial registration of CP-BOLD MR

Ilkay Oksuz, Anirban Mukhopadhyay, Marco Bevilacqua, Rohan Dharmakumar, Sotirios A. Tsaftaris

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new contrast agent- and stress-free imaging technique for the assessment of myocardial ischemia at rest. The precise registration among the cardiac phases in this cine type acquisition is essential for automating the analysis of images of this technique, since it can potentially lead to better specificity of ischemia detection. However, inconsistency in myocardial intensity patterns and the changes in myocardial shape due to the heart’s motion lead to low registration performance for state-of-the-art methods. This low accuracy can be explained by the lack of distinguishable features in CP-BOLD and inappropriate metric definitions in current intensity-based registration frameworks. In this paper, the sparse representations, which are defined by a discriminative dictionary learning approach for source and target images, are used to improve myocardial registration. This method combines appearance with Gabor and HOG features in a dictionary learning framework to sparsely represent features in a low dimensional space. The sum of absolute differences of these distinctive sparse representations are used to define a similarity term in the registration framework. The proposed approach is validated on a dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canines.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
EditorsJoachim Hornegger, Alejandro F. Frangi, William M. Wells, Alejandro F. Frangi, Nassir Navab, Joachim Hornegger, Nassir Navab, William M. Wells, William M. Wells, Alejandro F. Frangi, Joachim Hornegger, Nassir Navab
PublisherSpringer Verlag
Pages205-213
Number of pages9
ISBN (Print)9783319245706, 9783319245706, 9783319245706
DOIs
Publication statusPublished - 2015
Externally publishedYes
Event18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: 5 Oct 20159 Oct 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9350
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Country/TerritoryGermany
CityMunich
Period5/10/159/10/15

Bibliographical note

Publisher Copyright:
© Springer International Publishing Switzerland 2015.

Keywords

  • CINE MR
  • CP-BOLD MR
  • Dictionary Learning
  • Registration
  • Similarity Metric

Fingerprint

Dive into the research topics of 'Dictionary learning based image descriptor for myocardial registration of CP-BOLD MR'. Together they form a unique fingerprint.

Cite this