Diagnosis of Breast Cancer Using Novel Hybrid Approaches with Genetic Algorithm

Ebru Pekel Özmen*, Tuncay Özcan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Cancer is a group of diseases which are formed by the uncontrolled proliferation and growth of tissues and cells in organs and their treatment and approach are different from each other. Cancer disease shows too fast metastasis. Therefore, early diagnosis and treatment is very important. Technological advances in computer and electronics, early stages of cancer increased the probability of correct diagnosis. Especially in recent years, better results are obtained in the diagnosis of cancer with the studies based on machine learning. In this study, hybrid approaches were proposed for diagnosis of breast cancer. XGBOOST and Artificial Neural Network (ANN) algorithms were employed by hybridizing with genetic algorithm (GA) to improve classification accuracy. The performance analysis of the proposed approaches was presented with ‘Wisconsin’ dataset taken from UCI machine learning repository. Numerical results showed that the proposed hybrid XGBOOST-GA approach significantly outperformed the classical prediction algorithms and the best classification accuracy was achieved.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation - Proceedings of the INFUS 2021 Conference
EditorsCengiz Kahraman, Selcuk Cebi, Sezi Cevik Onar, Basar Oztaysi, A. Cagri Tolga, Irem Ucal Sari
PublisherSpringer Science and Business Media Deutschland GmbH
Pages589-595
Number of pages7
ISBN (Print)9783030856250
DOIs
Publication statusPublished - 2022
EventInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021 - Istanbul, Turkey
Duration: 24 Aug 202126 Aug 2021

Publication series

NameLecture Notes in Networks and Systems
Volume307
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021
Country/TerritoryTurkey
CityIstanbul
Period24/08/2126/08/21

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • ANN
  • Breast cancer
  • Classification
  • Genetic algorithm
  • XGBOOST

Fingerprint

Dive into the research topics of 'Diagnosis of Breast Cancer Using Novel Hybrid Approaches with Genetic Algorithm'. Together they form a unique fingerprint.

Cite this