Abstract
An autonomous emergency braking (AEB) system is a driver assistance system that helps to avoid or mitigate the damages of rear-end collisions. This is achieved by alerting the driver through collision warnings to induce driver initiated braking. If the driver does not react to the warnings issued by the system, then the AEB system starts applying the brakes autonomously. Conventional AEB systems do not take into account the situations that affect the stopping distance such as tire/road friction coefficient and road slope. This paper presents an adaptive AEB system algorithm that adapts the timings of the collision warnings and emergency braking by taken into account the tire/road friction coeffi-cient. The proposed AEB algorithm incorporates wheel slip ratio based friction estimation into its decision making logic. Simulations revealed that the friction estimation is dependent on the vehicle mass and road slope. Due to this reason, mass and road slope estimation are also studied.
Original language | English |
---|---|
Title of host publication | ELECO 2019 - 11th International Conference on Electrical and Electronics Engineering |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 815-819 |
Number of pages | 5 |
ISBN (Electronic) | 9786050112757 |
DOIs | |
Publication status | Published - Nov 2019 |
Event | 11th International Conference on Electrical and Electronics Engineering, ELECO 2019 - Bursa, Turkey Duration: 28 Nov 2019 → 30 Nov 2019 |
Publication series
Name | ELECO 2019 - 11th International Conference on Electrical and Electronics Engineering |
---|
Conference
Conference | 11th International Conference on Electrical and Electronics Engineering, ELECO 2019 |
---|---|
Country/Territory | Turkey |
City | Bursa |
Period | 28/11/19 → 30/11/19 |
Bibliographical note
Publisher Copyright:© 2019 Chamber of Turkish Electrical Engineers.