TY - JOUR
T1 - Detrital zircon and provenance analysis of Late Cretaceous-Miocene onshore Iranian Makran strata
T2 - Implications for the tectonic setting
AU - Mohammadi, Ali
AU - Burg, Jean Pierre
AU - Winkler, Wilfried
AU - Ruh, Jonas
AU - von Quadt, Albrecht
N1 - Publisher Copyright:
© 2016 Geological Society of America.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - A multidisciplinary provenance study, including sandstone framework, heavy mineral analysis, in situ U-Pb dating of detrital zircon, and Hf isotopic ratio analysis of dated zircons, was undertaken on Late Cretaceous- Miocene deep-marine turbiditic and deltaic sandstones of Makran accretionary wedge, SE Iran, to determine their sedimentary provenance and tectonic setting. Sandstone framework modes reveal both magmatic arc rocks as a source of Late Cretaceous-Oligocene detritus and recycling of Miocene sandstones. Heavy mineral assemblages, Cr- spinel, and blue amphibole indicate ophiolite and high-pressure-low-temperature metamorphic rocks (blueschists) as a supplementary provenance. In total, 2931 laserablation- inductively coupled plasma-mass spectrometry (ICP-MS) U-Pb detrital zircon ages on 21 sandstone samples yielded three major age peaks at ca. 167 Ma, 88.7 Ma, and 48.9 Ma. Also, 241 in situ Hf isotope analyses of dated zircons provide evidence for dominantly igneous source rocks. Two main detrital zircon ages are identified: (1) abundant Middle Jurassic grains with Hf isotopic compositions of continental crust, suggesting a rifting-related magmatic provenance; and (2) Late Cretaceous- Eocene grains with Hf isotopic compositions of continental crust and nondepleted mantle, suggesting a continental magmatic arc provenance. This change in provenance is attributed to the Late Cretaceous convergence between Arabia and Eurasia.
AB - A multidisciplinary provenance study, including sandstone framework, heavy mineral analysis, in situ U-Pb dating of detrital zircon, and Hf isotopic ratio analysis of dated zircons, was undertaken on Late Cretaceous- Miocene deep-marine turbiditic and deltaic sandstones of Makran accretionary wedge, SE Iran, to determine their sedimentary provenance and tectonic setting. Sandstone framework modes reveal both magmatic arc rocks as a source of Late Cretaceous-Oligocene detritus and recycling of Miocene sandstones. Heavy mineral assemblages, Cr- spinel, and blue amphibole indicate ophiolite and high-pressure-low-temperature metamorphic rocks (blueschists) as a supplementary provenance. In total, 2931 laserablation- inductively coupled plasma-mass spectrometry (ICP-MS) U-Pb detrital zircon ages on 21 sandstone samples yielded three major age peaks at ca. 167 Ma, 88.7 Ma, and 48.9 Ma. Also, 241 in situ Hf isotope analyses of dated zircons provide evidence for dominantly igneous source rocks. Two main detrital zircon ages are identified: (1) abundant Middle Jurassic grains with Hf isotopic compositions of continental crust, suggesting a rifting-related magmatic provenance; and (2) Late Cretaceous- Eocene grains with Hf isotopic compositions of continental crust and nondepleted mantle, suggesting a continental magmatic arc provenance. This change in provenance is attributed to the Late Cretaceous convergence between Arabia and Eurasia.
UR - http://www.scopus.com/inward/record.url?scp=84991086162&partnerID=8YFLogxK
U2 - 10.1130/B31361.1
DO - 10.1130/B31361.1
M3 - Article
AN - SCOPUS:84991086162
SN - 0016-7606
VL - 128
SP - 1481
EP - 1499
JO - Bulletin of the Geological Society of America
JF - Bulletin of the Geological Society of America
IS - 9-10
ER -