Despeckling Based Data Augmentation Approach in Deep Learning Based Radar Target Classification

S. H.Mert Ceylan, Isin Erer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Speckle noise in SAR images distorts the image of the target and its surroundings, making difficult the target recognition task. Therefore, decomposition process of the speckle noise from the SAR images is important for radar automatic target recognition applications. Besides since the succes of the deep networks depends on the amount of data used in the training stage data augmentation increases classification rates. In this study, a new data augmentation approach based on despeckling has been proposed rather than the classical data augmentation techniques used in the processing of natural images in order to increase the deep learning-based radar target classification performance. Edge Avoiding Wavelet filter is used for speckle reduction task. Classification performances for original, despeckled and despeckling based data augmented datasets are compared on two traditional and basic CNN models. The experimental results show that despeckling based data augmentation method can improve the deep learning based radar automatic target recognition classification performance.

Original languageEnglish
Title of host publicationIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2706-2709
Number of pages4
ISBN (Electronic)9781665427920
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, Malaysia
Duration: 17 Jul 202222 Jul 2022

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2022-July

Conference

Conference2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
Country/TerritoryMalaysia
CityKuala Lumpur
Period17/07/2222/07/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • automatic target recognition
  • data augmentation
  • deep learning
  • despeckling

Fingerprint

Dive into the research topics of 'Despeckling Based Data Augmentation Approach in Deep Learning Based Radar Target Classification'. Together they form a unique fingerprint.

Cite this