TY - JOUR
T1 - Design of N-heterocycle based-phthalonitrile/metal phthalocyanine-silver nanoconjugates for cancer therapies
AU - Öney, Özlem İpsiz
AU - Yenilmez, H. Yasemin
AU - Bahar, Dilek
AU - Öztürk, Nazlı Farajzadeh
AU - Altuntaş Bayır, Zehra
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/8/4
Y1 - 2023/8/4
N2 - This study reports the anticancer properties of carbazole-containing phthalonitrile/phthalocyanine-modified silver nanoparticles for the first time. In this study, a new mono-substituted phthalonitrile namely 3-[9H-carbazole-9-ethoxy]phthalonitrile and its metal phthalocyanines {M = Zn, Co, and Mn(Cl)} were synthesized by template cyclotetramerization of phthalonitrile derivatives. The newly synthesized compounds were characterized using UV-vis, FT-IR, 1H NMR, 13C NMR, and mass spectroscopy. The resultant compounds were successfully linked to the surface of silver nanoparticles. The characterization of the surficial modification was carried out by applying the TEM technique. The cytotoxic activities of the studied nanoconjugates were tested against A549, DLD-1, and Wi38 cell lines by performing a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay with/without irradiation. Although the functionalization of silver nanoparticles increased the solubility of phthalocyanines in aqueous media, the presence of phthalonitrile/phthalocyanine derivatives on the silver nanoparticles’ surface improved their biological properties. All the studied biological candidates exhibited antiproliferative activities against the cell lines. The IC50 values calculated were between 6.80 and 97.99 μM against the studied cell lines in the dark. However, the IC50 values determined were between 3.11 and 88.90 μM with irradiation. The highest IC50 values obtained were 3.11 and 3.52 μM against the DLD-1 cell line for nanoconjugates 1-AgNP and 3-AgNP, respectively. The findings indicated that the compounds may be utilized as anticancer agents after further studies.
AB - This study reports the anticancer properties of carbazole-containing phthalonitrile/phthalocyanine-modified silver nanoparticles for the first time. In this study, a new mono-substituted phthalonitrile namely 3-[9H-carbazole-9-ethoxy]phthalonitrile and its metal phthalocyanines {M = Zn, Co, and Mn(Cl)} were synthesized by template cyclotetramerization of phthalonitrile derivatives. The newly synthesized compounds were characterized using UV-vis, FT-IR, 1H NMR, 13C NMR, and mass spectroscopy. The resultant compounds were successfully linked to the surface of silver nanoparticles. The characterization of the surficial modification was carried out by applying the TEM technique. The cytotoxic activities of the studied nanoconjugates were tested against A549, DLD-1, and Wi38 cell lines by performing a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay with/without irradiation. Although the functionalization of silver nanoparticles increased the solubility of phthalocyanines in aqueous media, the presence of phthalonitrile/phthalocyanine derivatives on the silver nanoparticles’ surface improved their biological properties. All the studied biological candidates exhibited antiproliferative activities against the cell lines. The IC50 values calculated were between 6.80 and 97.99 μM against the studied cell lines in the dark. However, the IC50 values determined were between 3.11 and 88.90 μM with irradiation. The highest IC50 values obtained were 3.11 and 3.52 μM against the DLD-1 cell line for nanoconjugates 1-AgNP and 3-AgNP, respectively. The findings indicated that the compounds may be utilized as anticancer agents after further studies.
UR - http://www.scopus.com/inward/record.url?scp=85169512647&partnerID=8YFLogxK
U2 - 10.1039/d3dt01656k
DO - 10.1039/d3dt01656k
M3 - Article
C2 - 37602369
AN - SCOPUS:85169512647
SN - 1477-9226
VL - 52
SP - 13119
EP - 13128
JO - Dalton Transactions
JF - Dalton Transactions
IS - 37
ER -