Abstract
In this paper, a feed-forward artificial neural network with a single hidden layer has been realized using analog circuit blocks designed in 90 nm UMC technology. The network is capable of solving non-linearly separable problems and successfully realizes the XOR gate, which is one of the most basic and common non-linear classification problems. The inputs and the weights of the network are represented by the amplitudes of the transient signals. The weights have been calculated through the back-propagation (BP) algorithm. The analog circuit-based learning implementation yields accurate results with the expected outputs.
Original language | English |
---|---|
Title of host publication | ELECO 2019 - 11th International Conference on Electrical and Electronics Engineering |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 379-383 |
Number of pages | 5 |
ISBN (Electronic) | 9786050112757 |
DOIs | |
Publication status | Published - Nov 2019 |
Event | 11th International Conference on Electrical and Electronics Engineering, ELECO 2019 - Bursa, Turkey Duration: 28 Nov 2019 → 30 Nov 2019 |
Publication series
Name | ELECO 2019 - 11th International Conference on Electrical and Electronics Engineering |
---|
Conference
Conference | 11th International Conference on Electrical and Electronics Engineering, ELECO 2019 |
---|---|
Country/Territory | Turkey |
City | Bursa |
Period | 28/11/19 → 30/11/19 |
Bibliographical note
Publisher Copyright:© 2019 Chamber of Turkish Electrical Engineers.