Derin Sinir Aǧlari ile Borsa Yonu Tahmini

Translated title of the contribution: Stock market direction prediction using deep neural networks

Hakan Gunduz*, Zehra Cataltepe, Yusuf Yaslan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Citations (Scopus)

Abstract

In this study, the daily movement directions of three frequently traded stocks (GARAN, THYAO and ISCTR) in Borsa Istanbul were predicted using deep neural networks. Technical indicators obtained from individual stock prices and dollar-gold prices were used as features in the prediction. Class labels indicating the movement direction were found using daily close prices of the stocks and they were aligned with the feature vectors. In order to perform the prediction process, the type of deep neural network, Convolutional Neural Network, was trained and the performance of the classification was evaluated by the accuracy and F-measure metrics. In the experiments performed, using both price and dollar-gold features, the movement directions in GARAN, THYAO and ISCTR stocks were predicted with the accuracy rates of 0.61, 0.578 and 0.574 respectively. Compared to using the price based features only, the use of dollar-gold features improved the classification performance.

Translated title of the contributionStock market direction prediction using deep neural networks
Original languageTurkish
Title of host publication2017 25th Signal Processing and Communications Applications Conference, SIU 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509064946
DOIs
Publication statusPublished - 27 Jun 2017
Event25th Signal Processing and Communications Applications Conference, SIU 2017 - Antalya, Turkey
Duration: 15 May 201718 May 2017

Publication series

Name2017 25th Signal Processing and Communications Applications Conference, SIU 2017

Conference

Conference25th Signal Processing and Communications Applications Conference, SIU 2017
Country/TerritoryTurkey
CityAntalya
Period15/05/1718/05/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Stock market direction prediction using deep neural networks'. Together they form a unique fingerprint.

Cite this