Derin Hibrit Oneri Sistemi

Translated title of the contribution: Deep Hybrid Recommender System

Didem Turker, Alper Ozcan, Sule Gunduz Oguducu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

With the spread of e-commerce platforms in recent years, recommendation systems have become quite popular. Traditional recommendation systems are mostly based on useritem interactions. However, recommendation systems which are based on only user-item interactions are often underperforming due to the data sparsity problem. Therefore, beyond user-item interactions, the rich side information of the product or user is a notable source for improving recommendation quality. For many years, artificial neural networks have been used in many computer science fields and have gained popularity in recommendation systems in recent years. In this study, two different deep hybrid learning architectures are presented. Thanks to the feed forward neural network we use in our architectures, performance in learning the nonlinear, complex relationship between useritem interactions is increased. By adding side information to the collaborative filtering process, solutions are provided for the cold start and data sparsity problems. By making use of the strengths of deep learning and side information, it has been ensured that the constraints of collaborative and content-based methods are mitigated and the recommendation performance is increased. The success of the developed method has been compared with other studies in this field.

Translated title of the contributionDeep Hybrid Recommender System
Original languageTurkish
Title of host publication2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728172064
DOIs
Publication statusPublished - 5 Oct 2020
Event28th Signal Processing and Communications Applications Conference, SIU 2020 - Gaziantep, Turkey
Duration: 5 Oct 20207 Oct 2020

Publication series

Name2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings

Conference

Conference28th Signal Processing and Communications Applications Conference, SIU 2020
Country/TerritoryTurkey
CityGaziantep
Period5/10/207/10/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Deep Hybrid Recommender System'. Together they form a unique fingerprint.

Cite this