Derin Anlama Aglari ile Insan Aktiviteleri Tanima

Translated title of the contribution: Human activity recognition using deep belief networks

Hulya Yalcin*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

Human activity recognition using new generation depth sensors are particularly important for application that require human activity recognition. In this paper, a deep learning based algorithm is developed human activity recognition using RGB-D video sequences. Based on the assumption that every human activity is composed of many smaller actions, a temporal structure is being learnt in order to improve the classification of human activities. Since our approach is an attempt to develop a deep learning structure to the problem, it can be considered as a deep structural arhitecture. A deep neural network is obtained manipulating the activitation functions which yield hidden variables at every hidden layer. Our approach outperforms the methods that are constructed upon engineered features, since it uses the skeleton coordinates extracted from depth images. Tested on a new dataset, it is observed that our appproach outputs better recognition rates compared to those of other state-of-art methods.

Translated title of the contributionHuman activity recognition using deep belief networks
Original languageTurkish
Title of host publication2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1649-1652
Number of pages4
ISBN (Electronic)9781509016792
DOIs
Publication statusPublished - 20 Jun 2016
Event24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey
Duration: 16 May 201619 May 2016

Publication series

Name2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings

Conference

Conference24th Signal Processing and Communication Application Conference, SIU 2016
Country/TerritoryTurkey
CityZonguldak
Period16/05/1619/05/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'Human activity recognition using deep belief networks'. Together they form a unique fingerprint.

Cite this