Derin Ögrenme Tabanli Otonom Yön Belirleme

Translated title of the contribution: Deep learning based autonomous direction estimation

Hulya Yalcin, M. Husrev Cilasun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Outdoor mapping and localization based on appearance is especially challenging since usually separate processes of mapping and localization are required at different times of day. The problem is harder in the outdoors where continuous change in sun angle can drastically affect the appearance of a scene. In this work, we propose a method for instantaneous visual direction determination for the autonomous mobile platforms assuming the mobile platform travels along a routine route. We propose a deep convolutional neural network based algorithm for classification of instantaneous images of the path to be followed. The model is tested on SeqSlam dataset and a success performance of %78.5 is achieved. Hidden layer weights are analyzed to ensure that the learning is actually achieved. Experimental results suggest that deep neural networks yield high recognition rates of images to be used for autonomous movement. Approach will be tested on a novel dataset and its performance will be realized in realtime as future work.

Translated title of the contributionDeep learning based autonomous direction estimation
Original languageTurkish
Title of host publication2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1645-1648
Number of pages4
ISBN (Electronic)9781509016792
DOIs
Publication statusPublished - 20 Jun 2016
Event24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey
Duration: 16 May 201619 May 2016

Publication series

Name2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings

Conference

Conference24th Signal Processing and Communication Application Conference, SIU 2016
Country/TerritoryTurkey
CityZonguldak
Period16/05/1619/05/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'Deep learning based autonomous direction estimation'. Together they form a unique fingerprint.

Cite this