Abstract
In this study, a deep learning-based method is proposed to automate the field of view of the camera measurement process, which is applied to each camera coming out of the mass production line and currently performed with the human eye. This proposed method is fundamentally based on detecting the time instants when a certain target enters and exits the scene seen by the camera. To be detected these moments, improved YOLOv3 with ResNet50 hybrid architecture is proposed. It is aimed to create a target detection model with less training data. With this model, the camera field of view is estimated. By using two different test systems and two different thermal cameras, a dataset is created to be used in the training processes of the proposed hybrid architecture, Faster-RCNN, and YOLOv3 target detection architectures. In the performed camera field of view estimation tests using this dataset, it is seen that the proposed hybrid architecture has higher accuracy than other target detection architectures.
Translated title of the contribution | Field of View Estimation in Thermal Cameras with Deep Learning |
---|---|
Original language | Turkish |
Title of host publication | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665450928 |
DOIs | |
Publication status | Published - 2022 |
Event | 30th Signal Processing and Communications Applications Conference, SIU 2022 - Safranbolu, Turkey Duration: 15 May 2022 → 18 May 2022 |
Publication series
Name | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|
Conference
Conference | 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|---|
Country/Territory | Turkey |
City | Safranbolu |
Period | 15/05/22 → 18/05/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.