Derin Öǧrenme ile Kişilik Tanilama

Translated title of the contribution: Personality identification by deep learning

Evren Daglarli*, Erke Aribas

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

In recent years, that researchers in psycho-social fields classify the personalities according to different criterias, is one of the most interesting studies. In the viewpoint of the artificial intelligence researches, it is considered that analyzing the personalities will provide achieving realistic character modellings and realizing more intelligent systems via engineering disiplines in future. Beside of methodological gaps and conceptual uncertainities, insufficiencies in the mathematical modellings make developing computational algorithm difficult for this issue. These algorithms can be developed by present numerical or machine learning based methods in the literature. It can be realized by a hybrid method as composition of them. Numerical methods with linear or nonlinear system can also be suitable. From the standpoint of uncertainities, probabilistic (Bayesian, Monte Carlo, etc.) or fuzzy approaches can elaborate the modelling. Machine learning based methods (Markovian, support vector machines, Boltzman machines or artificial neural networks, etc.) can provide benefit to this kind of the study. In this study, we propose deep neural network based personality identification system with dataset which is composed from given responses to a questionaire prepared as suitable to the purpose. Our approach is verified with the classification results related to this.

Translated title of the contributionPersonality identification by deep learning
Original languageTurkish
Title of host publication2017 25th Signal Processing and Communications Applications Conference, SIU 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509064946
DOIs
Publication statusPublished - 27 Jun 2017
Event25th Signal Processing and Communications Applications Conference, SIU 2017 - Antalya, Turkey
Duration: 15 May 201718 May 2017

Publication series

Name2017 25th Signal Processing and Communications Applications Conference, SIU 2017

Conference

Conference25th Signal Processing and Communications Applications Conference, SIU 2017
Country/TerritoryTurkey
CityAntalya
Period15/05/1718/05/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Personality identification by deep learning'. Together they form a unique fingerprint.

Cite this