Abstract
Deep learning is widely used to create artificial contents on the Internet. Similarly, it is also used to detect fake contents. Fake frames created and integrated with deep learning algorithms are known as deepfake. Recently, malicious users tend to use deepfake to manipulate genuine contents to carry out variety of attacks. Video conferencing apphcations has been a significant target of the malicious users since the beginning of Covid-19 pandemic who use deepfake models to create fake virtual identities in onhne video conferences. We propose a lightweight deepfake detection model that may be integrated with video conference applications to detect fake faces. Experimental analyses show that the proposed model provides acceptable accuracy to detect fake images on video conferences.
Original language | English |
---|---|
Title of host publication | Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 36-41 |
Number of pages | 6 |
ISBN (Electronic) | 9781665429085 |
DOIs | |
Publication status | Published - 2021 |
Event | 6th International Conference on Computer Science and Engineering, UBMK 2021 - Ankara, Turkey Duration: 15 Sept 2021 → 17 Sept 2021 |
Publication series
Name | Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 |
---|
Conference
Conference | 6th International Conference on Computer Science and Engineering, UBMK 2021 |
---|---|
Country/Territory | Turkey |
City | Ankara |
Period | 15/09/21 → 17/09/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE
Keywords
- Deepfake
- Detection
- Inception-Resnet
- Machine Learning
- Security
- Video Conference